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ABSTRACT

An open architecture for intelligent multisensor integra-
tion in an industrial environment is being developed. A
logical sensor model is used to represent both real and
abstract sensors within the architecture, allowing for the
ready addition or replacement of sensors. Processing al-
gorithms are also encapsulated by logical sensors. Objects
are modeled using a connected graph structure wherein
each node represents a salient feature of the object. In-
teractive training is used to determine the logical sensors
required to extract desired features from objects. Extracted
features are identified by the user and become part of the
model. Once trained, the system can use object models for
identification and classification purposes.

1. INTRODUCTION

Modern automated machinery utilizes a variety of inde-
pendent sensors to collect and process information. Re-
cent application examples include poultry grading [1], ma-
terial surface inspection [2], printed circuit board inspec-
tion [3], catfish processing [4], produce classification [5],
and herring roe grading [6]. In most of these applications,
ad-hoc methods are used to develop a sensor integration
system to monitor the process. Such systems tend to be
difficult to understand, maintain, and upgrade. This is a
problem for industrial users whose requirements in terms
of speed, feature recognition, accuracy, and other process
monitoring parameters invariably change over time.

To address these needs, a new open architecture for in-
telligent multisensor integration in an industrial environ-
ment is being developed. This framework allows for the
computational evaluation and understanding of sensor un-
certainty and data validity through the comparison of sen-
sor data in a common format. A logical sensor model [7,8]
is used to represent both real and abstract sensors within
the architecture, allowing for the simple addition or re-
placement of sensors. In this model, structured control
flow facilitates dynamic sensor adjustment based on the
overall system requirements and individual sensor perfor-
mance.

In this paper, the determination of a suitable robust data
abstraction scheme is addressed. In this scheme, the rep-
resentation of qualitative information such as non-uniform
shape, texture, and other features required for inspection
and grading tasks is facilitated.

For non-uniform product grading, the representation of

objects must allow for the quantification of deviations
from an ideal model. The proposed data representation,
based upon work by Tomita and Tsuji [9], addresses this
problem by representing objects in terms of user specified
features relevant to the grading task, in addition to avail-
able ‘crisp’ data. This high level of data abstraction per-
mits the comparison of sensor information from diverse
sources. The features are then used for discordance based
identification and classification. Discordance methods are
described by Murphy in [10].

The data representation presented herein is validated
through example real world applications in the food pro-
cessing industry; however, this architecture is suitable for
a broad range of industrial applications, especially those
involving non-uniform product grading.

2. BACKGROUND

The use of intelligent systems and sensor technologies,
including machine vision, can be applied to many indus-
trial processes. However, many intelligent sensor systems,
while successful from the research perspective, are still
too slow to be of practical use. This is problematic, since
industry users expect computer systems to offer not only
improved quality, repeatability, and reliability but also to
maintain or increase production speeds.

In many industrial applications, grading, inspection,
and process control tasks occur within the controlled envi-
ronment of a plant. In most cases, the generic recognition
problems considered by machine vision researchers are
greatly simplified by a priori information. This informa-
tion encompasses both the background against which ob-
jects must be segmented, and knowledge about the objects
themselves. Typical production arrangements involve the
use of conveyor belts along which the product moves and
provides physical separation between objects. This sepa-
ration eliminates the need for algorithms which perform
well when objects are occluded; such algorithms are typi-
cally more computationally expensive. In addition, struc-
tured and predictable lighting is possible, further simpli-
fying the object recognition task by ensuring that objects
appear under the same intensity of light and shadow field.

3. SYSTEM OVERVIEW

An architecture has been developed for the purpose of
multisensor integration within an industrial setting. The
architecture is intended to be open, flexible, and easily
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configured to a variety of applications. As many industrial
processes involve the evaluation and inspection of prod-
ucts, vision systems offer the primary source of informa-
tion.

The architecture uses logical sensors (see Section 3.1,
below) to encapsulate physical sensors and processing al-
gorithms. The logical sensor hierarchy orders sensor data
in a bottom-up manner. The raw data collected by the
physical sensors is processed through different levels of
logical sensors to produce high-level representations of
sensed objects and features. While this approach may
be slower than an ad-hoc implementation, where the re-
quired data is extracted directly from the raw sensor data,
it offers considerable flexibility. High-level tasks such as
non-uniform product grading may be implemented with-
out regard to the specific sensing devices. The low-level
physical sensors and low-level data processing routines are
transparent. This allows for the addition, removal, and re-
placement of sensors within the architecture with the min-
imum amount of disturbance to the overall system. The
architecture is illustrated in Figure 1.
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Figure 1: Overall system architecture.

Configuration of the architecture is an interactive pro-
cess. A graphical user interface enables the user to select
and configure logical sensors from a library. Links are
created to indicate data flow. The system is trained by the
user; object models, as described in Section 6, are con-
structed using data available from the logical sensors.

3.1 Logical Sensors
A logical sensor is an abstract definition for a sensor. Log-
ical sensors were first defined by Henderson and Shilcrat
[7] and later broadened to include a control mechanism
by Henderson et al. [8]. This definition provides a uni-
form framework for multisensor integration by separating
physical sensors from their functional use within a system.
Figure 2 illustrates a logical sensor.
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Figure 2: Basic components of a logical sensor. (Adapted
from [8]).

Using this definition, physical sensors such as load
cells, thermocouples, cameras, and lasers may be repre-
sented. The data from these sensors may also be combined
and processed using a variety of available algorithms. In
this way, “sensors,” such as a line detector, which do not
physically exist may be made available to the user. Output
from a variety of logical sensors may be combined to ex-
tract complex features. Physical sensors may be replaced
or added without disturbing the entire system – only the
associated logical sensor need change.

4. EXTRACTION OF OBJECTS

Objects are extracted through the use of the appropriate
logical sensors. The logical sensors which are available to
the user depend on upon the types of physical sensors at-
tached to the system. For example, a load cell would have
a single logical sensor which provides measurement of an
object’s mass. On the other hand, a CCD camera may have
a much larger number of associated logical sensors. The
camera itself provides a raw image from which an edge de-
tecting logical sensor can extract edges. Similarly, a line
detecting logical sensor can extract straight line segments,
or a colour logical sensor can extract relevant colour in-
formation, from the same raw image. Then, these sensors
may be combined to detect compound objects.

Common logical sensors are available to the user from
a library. The associated algorithms are chosen primar-
ily for computational efficiency. Additional logical sen-
sors may be added to the library to address special user
needs, add new sensors, or introduce new algorithms. The
user chooses logical sensors and/or combinations of logi-
cal sensors to achieve the desired level of performance. In
general, this will involve a trade-off between accuracy and
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speed. After selecting the logical sensors to extract the de-
sired information, the user must adjust the associated pa-
rameters to achieve the desired results. This is performed
during the object modeling process outlined in Section 6.

Object types are determined by the extraction capabil-
ities of the logical sensors. Various edge detectors, seg-
mentation algorithms, texture identifiers, colour models,
and other image processing routines each produce par-
ticular object types: lines, regions, textures, colours, etc.
These types are used to identify the extracted objects and
features.

5. PROPERTIES OF OBJECTS

Within the data representation, objects have two differ-
ent types of properties, namely: physical object proper-
ties and relational properties (i.e. relationships to other
objects). Physical object properties include position infor-
mation, shape, colour, intensity, and texture. For each of
these physical properties an associated confidence level is
provided by the logical sensors. Relational properties de-
scribe the object relative to others. Symmetry, adjacency,
relative position, and relative orientation are examples of
relational properties.

6. OBJECT MODELING

6.1 Model Structure
Each object recognized by the system is represented by a
connected graph. All but the simplest objects are repre-
sented by a hierarchy of nodes, where each node of the
graph represents a salient feature of the object. The com-
ponents are shown in Figure 3 and described in the follow-
ing sections.

ROOT NODE

XOR NODES

FREE NODES

Figure 3: Graph structure for object representation.

The object model, in contrast to the logical sensor hier-
archy, is a top-down representation of an object. The ob-
ject itself, represented as a root node, is the highest-level of
abstraction. Traversing down the graph, features of the ob-
ject are represented as individual nodes. Each subsequent
level becomes more and more detailed. This enables com-
pact and efficient object models. Only the level of detail
required for identification or classification need be speci-
fied.

6.1.1 Node: Each node of the graph represents a rec-
ognizable object or feature. These may be complex fea-
tures extracted from information provided by one or more
logical sensors. Each node may be a parent node, that is,
it is associated with one or more child nodes which further
details features of the parent node. For example, a parent
node may be a digital image of an apple while child nodes
may include the colour of the apple image, the size of the
apple image, etc. Alternatively, a node may contain sim-
ple crisp measurements provided by a single sensor, for
example, mass and temperature. The node structure con-
tains the name of the object, the type of object, and the
object properties. In addition, the logical sensor(s) used to
extract the data are detailed here, along with relevant op-
erating parameters. Features which are not always present
in a parent node are marked by a free node tag. Finally,
links to parent and child nodes are maintained within the
structure. This is illustrated in Figure 4. The root node,
encapsulating the representation of an entire object, is a
special case.
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Figure 4: Basic components of object node.

6.1.2 Unconditional Link: An unconditional link is
used to represent a parent-child relationship between
nodes; it is graphically illustrated by a solid line. Logi-
cal sensors are used to extract child objects from parent
objects. Extraction may involve segmentation, merging,
or grouping of parent objects. Each child node specifies
the logical sensor(s) used for processing and the associ-
ated parameters.

6.1.3 Conditional Link: A conditional link is used to
represent an exclusive OR relationship. This type of link is
depicted as a dashed line. The conditional link is used to
group child objects from a single parent node. This group-
ing indicates that only one of the connected child objects
will be recognized from a given parent node.

The conditional link is particularly powerful for the rep-
resentation of most non-uniform products which cannot be
uniquely defined. Variability in features, common to most
non-uniform products may be accommodated through the
definition of acceptable variations.

6.2 Initial Model Development
An initial model is built for each object to be classified
by the system. The creation of this model is an interac-
tive process. The user starts by providing a name for the
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overall object; this is used to identify the root node. Log-
ical sensors are chosen to extract features from the over-
all object and parameters are adjusted via an interactive
guided search until the desired results are achieved. Upon
the successful extraction of each feature (which is also an
object), a child node associated with the extracted object
is created. This node stores the object name and logical
sensor parameters. The properties of the object are also
stored in the node. Property values are updated for each
object presented to the system and are determined by the
object type.

This process may be repeated to extract features from
each new node until all relevant objects have been defined
in the model. As objects are further subdivided new de-
scendant nodes are created.

6.3 Model Refinement
Once the initial model has been created, refinement is
often necessary to enable the recognition of objects not
present in the first model or to define acceptable devia-
tions of objects from the original model. Similar to the
initial model building, refinement is an iterative process.
Training proceeds by presenting additional objects to the
system. The greater the number objects used for training,
the more robust the object model will be.

The user may test the performance of system by allow-
ing the system to perform automatic object recognition. If
the system fails to recognize an expected object, the user
is prompted to refine the model. This is repeated until all
of the training objects are properly analyzed by the model.
As models are built for each class, the distinguishing fea-
tures (i.e. disparities between objects) are stored and used
for classification and grading purposes.

The object model may be refined in the following ways:

• Refinement of parameters: If objects are not ex-
tracted properly, it is necessary for the user to adjust
the logical sensor parameters. The proper values are
determined by a guided search as in the initial model
creation. After adjusting parameters, the relevant ob-
jects are selected and identified by the user to update
the model.

• Refinement of properties: Properties may require re-
finement if an expected object is extracted but not
properly identified. In this case, the user selects the
object and provides a name. The model will be re-
vised accordingly.

• Refinement of relations: The value of the relational
property between objects may be insufficient, caus-
ing the system to be unable to determine a desired re-
lation. The user selects the pair of objects and inputs
an index for the relationship. The missing relation
will be added to the model.

• Declaration of conditional relationship: A condi-
tional relationship is defined in cases where the ex-
tracted object is a unique variation of an object
presently in the model. The user identifies the ob-
ject and declares the object(s) which are conditional

grouped. Since each object in the conditional group-
ing is unique, only one object in the group may be
identified at any one time.

• Declaration of free object: Objects which are not al-
ways present are tagged as free objects. This con-
trasts with other objects which, if not tagged, are al-
ways expected to be extracted and identified from the
parent node.

The above refinements are used when objects are not
correctly extracted. Refinements may also be necessary
in the case of an identification error. Identification errors
arise when the there is a common attribute shared by two
different objects. These are overcome by identifying dis-
tinguishing features present in either or both of the objects.
The feature(s) may be added to the model so that the dis-
parity may be used to distinguish between them.

In cases where this approach is unable to distinguish
between the two objects, it is necessary to determine if the
object models are correct; if not, the incorrect model must
be redefined.

7. AUTOMATIC RECOGNITION AND GRADING

Automatic recognition is the ultimate goal of any image
processing system. Once the model has been properly con-
structed, the system may be used to automatically analyze
objects presented to the system sensors. Recognition pro-
ceeds in a top down manner from the root nodes of the
model graph. The selection of a particular parent is con-
tingent on the successful identification of all descendant
objects. Should the system fail to find an expected ob-
ject at a particular level, the system returns to the previous
level and attempts to follow another branch. If a proper
match cannot be found, the system issues an error mes-
sage requiring the user to improve the object model.

There are two approaches which may be taken towards
object classification and grading. The first is an exten-
sion of the object recognition problem. The entire object
is identified based upon the features contained within the
object model and extracted by the logical sensors. The
identified object will fall into a predetermined classifica-
tion. Extracted object properties may then be used to fur-
ther evaluate the object based on attributes such as size,
colour, and mass. This information may then be used in
the control of automated equipment for the separation of
the different classifications.

For complex objects it may be more efficient to define
the object models somewhat differently. Instead of at-
tempting to identify the entire object, only distinguishing
features are extracted. The features may then used as input
to an inference engine. The presence or absence of partic-
ular features and the associated object properties may then
be used to classify the object into a particular grade.

8. EXAMPLE APPLICATION

Herring roe grading is an example of a real world problem
to which this system may be applied. The herring roe in-
dustry in Canada is valued at $100 million a year, catering
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primarily to the Japanese market. Appearance and texture
of the salted herring roe are the primary factors influenc-
ing price. Proper classification allows processors to offer
improved value to their customers.

Herring roe is assigned a grade according to aesthetic
properties including colour, texture, size, and shape. Of
these, all but texture are assessed visually; texture is as-
sessed by tactile examination. The highest quality roe are
light yellow and stain-free in colour, firm, over 75mm in
length, and fully formed without twists, cracks, or breaks.

An example of grade 2-H or henke roe, under both am-
bient and structured light, may be seen in Figure 5. Figure
6 illustrates a number of features which may be extracted
from the raw image data.

(a) Ambient light image.

(b) Structured light image.

Figure 5: Grade 2-H herring roe.
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Figure 6: Herring roe features.

Shape is one of the most difficult features to assess, and
has been attempted using computer vision [6, 11]. Other
features not indicated in Figure 6 include mass and length.

3-D profile information extracted from the structured light
image provides a measure of ‘twist’ and can be used to
determine the existence of depressions – a characteristic
of henke roe.

8.1 Sensors
The system makes use of two different vision systems.
The first is an interlaced CCD camera under “ambient”
light; the other is a passive scan CCD camera under struc-
tured laser light. Each of these physical sensors has a cor-
responding logical sensor. Image processing algorithms
for edge detection, curvature estimation, dominant point
detection, etc. are encapsulated in higher level logical sen-
sors. The sensor hierarchy is shown in Figure 7.
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Figure 7: Sensor hierarchy for grade 2-H herring roe
grading.

8.2 Object Model
The roe is modeled as shown in Figure 8. The model was
constructed as outlined in Section 6. From the roe image
(Figure 5), features such as the head, tail, ventral profile,
and cracks were identified. Features are represented as
descendant nodes extracted from parent nodes. The log-
ical sensor and associated parameters used to extract the
feature are associated with the object in the node. For ex-
ample, the logical sensor used for depression location can
extract either air bladders or depressions depending on the
parameter values.

9. SUMMARY

To address the needs of industrial users, who require eas-
ily configurable, reliable, and flexible sensor systems, an
open architecture for multisensor integration is being de-
veloped. Using a logical sensor model to encapsulate
physical and abstract sensors, a bottom-up sensor hier-
archy is constructed. This provides high-level decision
making and inference modules with abstract information,
independent from the low-level sensors. Sensor reconfig-
uration may proceed with minimal impact to the overall
system.

The user interactively builds object models by select-
ing the logical sensors which will extract the desired fea-
tures. This process is assisted by the system using a
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Figure 8: Object model for grade 2-H (henke) roe.

guided search strategy. Object models consist of a con-
nected graph structure which indicates feature dependen-
cies in a top-down manner. The root node encapsulates the
entire object; descendants represent increasingly detailed
features of the object.

The specification of the object models has a significant
impact on the overall system speed. Should a number of
unnecessary features be included, processing time may be
wasted and optimal performance will compromised. For
this reason, future directions may incorporate an expert
system to aid in the creation of the model database and
classification rules. This system could further ease the bur-
den of model creation and ensure that representations are
efficient in both space requirements (number of nodes) and
processing time (appropriate selection and combination of
logical sensors).

There are many applications for this architecture and
approach to data representation. Examples include the
sorting and grading of fruit and vegetables, meat, fish,
and other non-uniform food products. In fact, the grading
of any product, uniform or not, should be facilitated by
the architecture. Other industrial applications which could
benefit from sensor technologies, such as machining and
manufacturing operations, will be the focus of future ap-
plications.
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