
Object Surveillance Using Reinforcement Learning
Based Sensor Dispatching

Michael D. Naish∗, Elizabeth A. Croft† and Beno Benhabib‡
∗Dept. of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9

Email: naish@eng.uwo.ca
†Industrial Automation Laboratory, University of British Columbia, Vancouver, B.C., Canada V6T 1Z4

Email: ecroft@mech.ubc.ca
‡Computer Integrated Manufacturing Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8

Email: beno@mie.utoronto.ca

Abstract— This paper outlines an approach to the coordination
of multiple mobile sensors for the surveillance of a single
moving target. A real-time dispatching algorithm is used to
select and position groups of sensors in response to the observed
object motion. The aim is to provide robust, high-quality data
while ensuring that the system can react to unexpected object
manoeuvres. Sensors are assigned to collect data at specific
points on the object trajectory. A dispatching strategy learned
via reinforcement learning is used to control the sensor poses
with respect to these points. In using the learned strategy,
each sensor adopts an egocentric view of the system state to
determine the most appropriate action. Simulations demonstrate
the performance of the RL-based dispatcher, in comparison to
similar static-sensor systems.

I. INTRODUCTION

An approach for the coordination and control of multiple
mobile sensors, as applied to the surveillance of a target
manoeuvring within a defined workspace, is considered in this
paper. The collected sensory information is targeted towards
autonomous robotic tasks, particularly object recognition,
characterization, and interception. The use of multiple redun-
dant sensors provides an opportunity to improve the quality
and robustness of the acquired data, as compared to single-
sensor and/or fixed-sensor systems. Specifically, improvements
may be realized by sensing the object from optimal positions,
mitigating uncertainty through sensor fusion, and providing
the capability to react to object manoeuvres.

The task of selecting and positioning sets of sensors in
the context of moving object surveillance is nontrivial. The
complexity of the task arises from the nature of the task
space. Often the task space is continuous and nonlinear, with
many variables that impact the success of the surveillance
system. A multisensor surveillance system must address two
problems: (i) The combinatorial problem of determining which
sensors will be used at any given time (i.e., selecting subsets
of sensors from the general pool of sensors that are available
for surveillance), and (ii) the constrained, nonlinear problem
of determining a suitable pose for each sensor.

Some recent approaches to this problem rely on cost func-
tions (heuristics) [1] or autonomous agents [2] to direct sensors
towards particular surveillance targets. An alternate approach
uses the principles of dispatching, as applied to operation of

service vehicles such as taxicabs and ambulances (e.g., [3]–
[5]), where the role of the dispatcher is to determine which
sensor(s) will be sent to service a particular demand.

A. Dispatching

A dispatcher may be used to select and position groups of
sensors in a coordinated manner for the real-time surveillance
of a manoeuvring object. In doing so, the remaining sensors
can be positioned in anticipation of future sensing require-
ments.

The goal of the dispatcher, as considered in this paper, is
to maximize the effectiveness of the sensing system as it es-
timates object parameters at predetermined times or positions
along the (discretized) object trajectory. It is assumed that the
times at which the information is desired are fixed. These
predetermined times are referred to as demand instants, tj . The
(expected) position of the object at a particular demand instant
is a demand point, Dj . Observations of the object motion
are used to predict the demand points for a finite segment of
the object trajectory. This set of demands constitutes a rolling
horizon, with the demand at the start of the horizon requiring
service (data acquisition) first.

To improve the quality and robustness of the acquired data,
the sensing system is assumed to consist of a set of multiple
redundant sensors. Of these sensors, only a subset are typically
required to meet the sensing requirements of a demand. In
other words, the dispatcher selects from the total number of
sensors, n, a subset (of size k, where k ≤ n). The data from
this group of sensors, or fusion subset, is then combined using
a sensor fusion process (for applicable techniques, see [6]).

The dispatcher uses the rolling horizon to assign sensors
to demands and specify the desired pose of each sensor. The
demands are considered sequentially, evaluating the fitness of
each sensor with respect to the demand under consideration.
A fusion subset comprising the k most suitable sensors is
assigned to the first demand point. This assignment reflects
the coordination strategy of the dispatcher. The corresponding
desired poses of the assigned sensors, in addition to the
remaining sensors, are determined by a positioning strategy.
The positions of the unassigned sensors are based on the future
sensing requirements indicated by the rolling horizon.

naish
Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA 2004)New Orleans, Louisiana, Apr. 26-May 1, 2004

naish
1

There are a number of different possible implementations
for the dispatcher. These include the use of optimization,
heuristic rules, machine learning, agents, etc. A heuristic rule
based approach is discussed in [7]; this paper proposes a
machine learning based approach. Machine learning offers
the possibility of developing a dispatcher through experience,
gaining insight into the problem over time.

II. REINFORCEMENT LEARNING

Reinforcement learning (RL), unlike supervised learning
techniques, does not require knowledge of “correct” outputs
for a given input. Instead, it is based on an idea that is
common to human learning, namely, that the tendency to
produce a particular action is strengthened if it produces
favourable results (e.g., pleasure), and weakened if it produces
unfavourable results (e.g., pain). RL, as applied to the control
of a system, attempts to learn the long-term value of the
actions that may be taken from any given state [8]. These
values are referred to as Q-values. Learning proceeds on
the basis of a numerical reward received for each action
that is taken. By learning the value of all state-action pairs,
Q(s, a), the reward received for taking an action can always
be maximized. Learning every Q(s, a) requires a balance of
exploration (taking actions of unknown value) and exploitation
(selecting the best or greedy action to maximize reward).
Using an action selection policy that achieves this balance will
allow an appropriate control strategy to be learned, provided
that the reward function properly reflects the objectives of the
system.

A. Temporal Difference Learning

Without a world model to provide the state-transition prob-
abilities, the action-value function can be learned using an
incremental update equation, based on the temporal difference
(TD) of the estimated action-value functions. The action-value
function is updated by the TD-error as follows [8]:

Qt+1(st, at) = Qt(st, at) +

η
[
rt+1 + γQt(st+1, at+1) − Qt(st, at)
︸ ︷︷ ︸

TD-error

]
, (1)

where r is the received reward; γ, 0 ≤ γ ≤ 1, represents the
discount rate (which balances between immediate and future
rewards); and η controls the learning rate. Eq. (1) is referred to
as one-step SARSA [8], arising from the quintuple of events
(st, at, rt+1, st+1, at+1) that make up the transition from one
state-action pair to the next. To better express the causal effect
of selected actions, SARSA is augmented by eligibility traces
for each state-action pair (i.e., ∀s ∈ S, a ∈ A) as follows:

et(s, a) =

{

γλet−1(s, a) + 1 if s = st and a = at;

γλet−1(s, a) otherwise,
(2)

where λ is referred to as the trace-decay parameter and is
responsible for temporal credit assignment. When λ = 0, no
feedback occurs beyond the current time step; when λ = 1,
the error feeds back without decay arbitrarily far in time. The
traces indicate the degree to which each state-action pair is

eligible for undergoing learning changes, should a reinforcing
event occur. Thus, the action-value function Qt(s, a) may be
updated by SARSA(λ) as follows:

Qt+1(s, a) = Qt(s, a) + ηδtet(s, a), ∀s, a, (3)

where

δt = rt+1 + γQt(st+1, at+1) − Qt(st, at). (4)

One-step SARSA and SARSA(λ) follow the approach of
generalized policy improvement. The action values of the
current policy π are approximated by Qπ(s, a); these estimates
are then used to improve the policy and the process repeats.
If the policy is improved towards the optimal policy (by
increasingly selecting greedy actions) then, eventually, the
action-value function will reflect the optimal action for each
state.

B. Function Approximation

The simplest representation of the state-action space is to
use a table with one entry for each state-action pair. This
approach is suitable for limited discrete state-spaces with no
requirement for generalization; however, for many tasks, it
becomes impossible to represent all possible states, to say
nothing of repeatedly visiting each to ensure the adequate
learning. An alternate approach that has been applied to a
number of different applications is neural networks. Suc-
cessful applications of network-based RL include playing
backgammon at the grandmaster-level [9], the dispatching of
elevators within an office building [10], and mobile robot
navigation [11]. In each case, the state space exceeds 1020

states; however, successful strategies were learned via TD-
learning.

Unlike other approaches (e.g., tile-coding, radial-basis func-
tions, etc.), neural networks scale proportionally with the input
space. Neural networks can approximate complex functions
and provide generalization of the state space. The most com-
mon form of network is a multi-layer feed-forward network,
trained by the back-propagation of errors [12]. Such a network
may be employed to represent the value of the state-action
pairs particular to a system. A general algorithm for applying
TD-learning techniques to train a feed-forward neural network
is outlined in [13]. The approach uses eligibility traces to
adjust the nodal weights during back propagation.

III. LEARNING TO DISPATCH

A. General Approach

Dispatching must both select the sensors to service demands
and guide each sensor into appropriate poses. The coordination
strategy is implemented at the system level. In other words,
the dispatcher acts as a supervisory controller, aware of the
system state and the capabilities of each sensor. Fusion subsets
are constructed by assessing each sensor heuristically, [7].

The positioning strategy, on the other hand, is implemented
at the sensor level. Effectively, each sensor is an autonomous
agent, independently determining its pose in the workspace.

naish
2

X

Y

1.0 m

0.
62

5
m

S3

S4

S1

S2

Sensors

Object

Rails

Fig. 1. Example workspace.

An appropriate strategy is learned through exposure to exem-
plary object trajectories. The goal of each sensor is to select
an appropriate action from a finite set. The number of actions
is dependent on the constraints imposed on the sensor motion.
The simplest case involves sensors that are mounted on a rail
or linear stage. Such sensors are capable of three actions: (i)
move right, (ii) move left, and (iii) stop. Additional degrees
of freedom (either translational or rotary) increase the number
of actions exponentially. For example, the addition of a stage
orthogonal to the first (e.g., up and down) would increase the
number of possible actions to nine.

Herein, an example surveillance system is considered for
illustrative purposes. This system is applied to a planar
workspace, where the target and sensors are each constrained
to move in planes that are parallel to one another, Fig. 1.

In Fig. 1, sensors are constrained to rails at the edge of
the workspace. Each sensor can translate along the rail (x),
and rotate (α). The characteristics of the sensors are assumed
to be such that the best-quality sensor data is collected when
the range between the sensor and object is minimized and the
sensor axis is aligned with the object. Under this assumption,
the dispatcher learns to control the translational motion of each
sensor; rotation is controlled in a heuristic manner, minimizing
the angular offset between the sensor axis and appropriate
demand points on the rolling horizon. Further details regarding
heuristic control may be found in [7].

B. Action-Value Estimation

For any given state, a sensor must be able to select a single
action from the various possibilities. If A = {right, left, stop},
then only one of these actions can be performed at a given
point in time. Herein, the value of each action is predicted us-
ing a separate single-output feed-forward neural network. Each
network has a two-layer (single hidden layer) topology and
utilizes logistic activation functions. The action-value function
Q(s, a) is thus represented by three separate networks. The use
of separate networks prevents the hidden unit weights from
receiving conflicting demands from different outputs (actions)
during training [11].

The action-value function (policy) is shared by all sensors.
This egocentric representation contrasts with a distributed im-
plementation in which each sensor has its own policy, allowing
specialized control. Under the assumption that each sensor is
operationally identical, the egocentric implementation allows
for faster learning and better policy generalization.

TABLE I
EGOCENTRIC REPRESENTATION OF STATE SPACE.

Description Type No.
Inputs

Part of fusion subset (assigned). Binary 1
Normalized range behind sensor to demand point
(relative to direction of target motion).

Real 5

Normalized range ahead of sensor to demand point. Real 5
Normalized x-position of the first demand point in
rolling horizon.

Real 6

Normalized x-position of sensor in workspace. Real 6
Total 23

C. State Space Encoding

The state of the system, from the point of view of a
particular sensor, must be represented in the form of inputs
to the action networks. This encoding expresses the features
upon which actions are selected. The challenge is to provide
all of the necessary information, while eliminating states that
may be redundant, unnecessary, or otherwise confusing. One
such encoding is presented in Table I.

In Table I, the real-valued inputs are spread encoded across
a number of inputs. This serves to improve the resolution of
the network, allowing select states to be better distinguished
from one another. Two types of encoding are used. The first
represents the range between the sensor and the first demand
point on the rolling horizon. It is based on a set of N
overlapping sigmoid functions (one for each node), where N
is an even integer value. The activation of each input node,
oi, is dependent on the relative position of the sensor:
If (xSi < xDj ∧ xD(j+1)

> xDj) ∨ (xSi > xDj ∧ xD(j+1)
<

xDj) (i.e., the sensor, Si, is “behind” the demand point, Dj),

oi =

{ 1
1 + ew(b(N/2+1−i)+r+u) i = 1, . . . , N/2

0 i = N/2 + 1, . . . , N ;
(5)

else if (xSi > xDj ∧xD(j+1)
≥ xDj)∨(xSi < xDj ∧xD(j+1)

≤
xDj) (i.e., the sensor is “ahead of” the demand point),

oi =

{

0 i = 1, . . . , N/2
1

1 + ew(b(i−N/2)−r+u) i = N/2 + 1, . . . , N,
(6)

where

w = 4N, u = 1/2N, bi = (2i − 1)/(N + 1),

and

r =

√

(xSi − xDj)
2 + (ySi − yDj)

2

(xLR − xUL)2 + (yLR − yUL)2
.

Here, xSi represents the x-position of the sensor, xDj is the
x-position of the jth demand point, and r is the range between
the sensor and the demand point, normalized by the diagonal
distance across the workspace (spanning the upper-left and
lower-right corners).

The intent of this encoding is to increase the activation level
of the input nodes as the range between the sensor and demand
point increases. For example, as the sensor falls further behind,
more inputs in the range i = 1, . . . , N/2 come on, starting
with node 1 (nodes N/2 + 1, . . . , N will remain off). Note

naish
3

that if the sensor is “in-line” with the demand point, all N of
the input nodes will have activation levels equal to zero.

The second type of encoding, based on a set of Gaussians,
is used to represent the normalized position of a sensor
or demand point. Encoding the x-position of a sensor, for
example, the activation of the ith input node (of N nodes
total) is determined by:

oi = exp
(
−(x̂Si − i/N)2/2σ2

i

)
, (7)

where x̂Si is the normalized position of the sensor and σ2
i is

the encoding variance that defines the width of the Gaussian
(σ2

i = 0.01 was used herein). Similarly, the x-position of the
first demand point can be encoded.

D. Returns

The application of reinforcement learning to the sensor
dispatching problem requires a reward function to provide
a measure of how well the sensing system performs over
time. Object surveillance is episodic in nature. Each episode
begins when an object enters the workspace; it terminates
when the object exits the workspace. While in the workspace,
the performance of the sensing system is assessed herein using
a measure of demand-point visibility.

As defined in [7], the visibility of an unoccluded demand
point using a single sensor may be characterized as:

vs = 1/‖R‖ (8)

where ‖R‖ is the Euclidean norm of the covariance matrix
associated with the sensor measurement. When data from
multiple sensors is combined in a sensor fusion process,
visibility may be expressed as:

vf = 1/‖P‖, (9a)

where P represents the fused covariance matrix,

P =
[
∑k

i=1 R−1
i

]−1

. (9b)

Typically, the measurement uncertainty (covariance)
changes as the pose of the sensor(s), with respect to the
demand point, is varied. Considering a single sensor, the
goal of the dispatcher is to manoeuvre the sensor such that
the visibility measure vs is maximized. The sensor pose at
this maximum reflects the best-possible visibility, vp. The
best-possible visibility is constrained by the capabilities of
the sensor, the task, and the workspace (i.e., by mounting
the sensor on a positioning stage, the path of the sensor is
restricted). The best-achievable visibility, va, is the visibility
that can be expected, given a finite amount of time for
manoeuvring. Thus, va is constrained additionally by the
dynamic characteristics of the sensor (maximum velocity,
acceleration, etc.) and time. Similarly, vp and va may be
computed for a group of sensors by maximizing vf. The only
difference for multiple sensors is that vp must also consider
the optimal fusion subset. Together, va and vp may be used
to compute the normalized best-achievable visibility:

vn = va/vp. (10)

The normalized visibility measure in (10) allows the per-
formance of different sensing systems (possibly surveying
different object trajectories) to be compared to one another.

In computing the reward at each iteration, vn may be used
in one of two ways. The first way assesses performance for
the individual demand points; the second use computes the
configuration visibility, which indicates the overall success
of the sensing system for the given object trajectory. This is
defined as the worst-case visibility for the M demand points
serviced over the object trajectory. Together, these visibility
measures are utilized to express the overall return for the
episode. At each iteration, the reward, rt is defined by:

rt =

(v̄n)j =
(

j−1
j

)
(v̄n)j−1 +

(
w1

j

)
(vn)j , j ∈ N

+

if t = tj (i.e., at demand point Dj); (11a)

w2vc = w2 minM
j=1(vn)j

if t = T (i.e., terminal state); (11b)

0 at all other times, (11c)

where w1 + w2 = 1.0 and (v̄n)j is the mean normalized
visibility of j demand instants. The idea here is that the
reward is 0 at all times other than when a demand has been
serviced and at the end of the episode. The balance between
the individual visibility measures and the overall configuration
visibility is controlled by the weight factors w1 and w2. The
individual visibilities are used in a cumulative average. This
serves two purposes: (i) it provides an immediate reward for
servicing a demand, placing greater emphasis on demands near
the beginning of the object trajectory; and (ii) it ensures that
the return will not exceed 1.0 (the maximum output of the
logistic sigmoid function used by the neural network). Note
that if the number of demands per episode, M , is known a
priori, the individual visibility measures can be used in place
of the cumulative mean visibility of (11a) as follows:

rt = (w1/M)(vn)j . (11a′)

This approach allows the individual demands to make an
equally weighted contribution to the overall return.

E. Network Training

The reward received at each time step (iteration) and the
action(s) that led to the reward are used to update the Q-
value estimates from each of the A networks. The training
algorithm, outlined in [13], uses back propagation of the TD-
error in combination with the action eligibilities to adjust the
network weights. The goal is to properly reflect the long-term
value of each state-action pair.

Given the Q-value estimates from each of the A networks,
the softmax action selection rule (with Boltzmann distribu-
tion) is used to choose the current action, balancing between
exploitation and exploration. Action a is selected at time t
with probability:

P (a|st) =
e−Qt(st,a)/τ

∑

a∈A
e−Qt(st,a)/τ

, (12)

naish
4

where τ is a positive parameter called the temperature. High
temperatures cause all actions to be nearly equiprobable; low
temperatures increase the influence of the value estimates.
As τ → 0, softmax action selection is the same as greedy
action selection. In practice, the probability of each action
is evaluated using (12) and the highest-probability action is
selected.

F. Motion Control

At the start of each service interval (just after servicing
a demand instant), an action is selected for each sensor by
applying the encoded system state to each of the action
networks. During training, the action is selected as described in
Section III-E; afterwards, the greedy action is always selected.
Given a selected action, the following algorithm is used to
determine the desired pose of each sensor:

1) Compute the translation for the update interval:

δx = tinterval ρ ẋSi , (13)

where tinterval is the duration of the interval for which
control is required, ẋSi is the maximum translational
velocity of the sensor and ρ is determined by the selected
action. e.g., ρ = +1 if a = right, −1 if a = left, and 0
if a = stop.

2) Compute the difference between current x-position of
sensor and the demand point that it is assigned to:

∆x = xDj − xSi . (14)

3) Specify the desired x-position of the sensor:

xpSi
=

xDj if |∆x| < |δx|;

xSi if a = stop;

xSi + δx otherwise.
(15)

4) Determine best-achievable orientation of the sensor,
αpSi

, with respect to the demand point. e.g., minimize
the angle between the sensor axis and the demand point,
given the maximum rotational velocity of the sensor,
α̇Si , and tinterval.

Note that, should the current prediction of the demand point
location lie outside of the confidence interval of the demand
point, as predicted at the time of assignment, the action
selected for the sensor is reassessed. This replanning may alter
the selected action, but does not change the sensor assignment.
The selected fusion subset is only adjusted at the start of the
service interval.

IV. RESULTS

This section investigates the performance of different sens-
ing systems, where the sensors are controlled by the learning-
based dispatcher outlined in the previous sections. Each system
utilizes the same four sensors; however, the maximum achiev-
able translational and rotational velocities range from 0, for
the static system, to ẋ = 0.2 m/sec and α̇ = π

2 rad/sec, for
the fastest system. (Note that, while the static sensors cannot
move, the fusion subsets are still adjusted in real-time.)

(a) Straight-line (b) Parabolic

Fig. 2. Observed trajectories.

The quality of information obtained during surveillance, and
the relative success of training, is dependant on the poses
of the sensors prior to an object entering the workspace. If
an estimate of the object trajectory is known a priori, the
initial sensor poses can be specified in an optimal manner.
One approach for determining an optimal initial sensing-
system configuration is outlined in [14]. Using this technique,
each sensing system was configured assuming the straight-line
trajectory shown in Fig. 2(a).

Given the initial configuration, the action networks for each
sensing system were then trained to expect the straight-line
trajectory shown in Fig. 2(a), corrupted by Gaussian white
noise (µ = 0, σ = 0.05 m). The object moves at approximately
0.1 m/sec. Fusion subsets of size k = 3 were assigned to
each demand instant. The action networks were composed of
23 input nodes, 10 hidden nodes, and 1 output node. The
training parameters were set as: η = 1, γ = 1, λ = 0.7,
w1 = 0.9, w2 = 0.1, and τ = 0.2. Training times ranged
between 80 and 1600 iterations (TD-learning updates) before
an effective dispatching strategy was learned. For learning
conducted on a Pentium 4-class (2.4 GHz) computer, training
requires approximately 65 seconds for 1000 iterations. The
performance of these sensing systems is presented in Fig. 3.

From Fig. 3 it can be seen that the dynamic surveillance
systems outperform the static surveillance system, as expected.
The better performance for the first demand points (particu-
larly for the static and fastest sensing systems) is an artifact
of the initial sensing-system configuration, which emphasizes
visibility of the initial demand point. Clearly, as the speed of
the sensors increases, the performance of the sensing system
improves. The fastest sensor system achieves near perfect
normalized visibility of 1.0—perfect performance is enabled
by increasing the sensor speed only slightly. It may also be
observed that even the limited dynamic capabilities of the
slowest system significantly improve the performance of the
system.

To investigate the robustness of the learning-based dis-
patcher to different target trajectories, the networks trained
using the straight-line trajectory were presented with the
parabolic trajectory in Fig. 2(b). The corresponding perfor-
mance results are shown in Fig. 4.

All of the sensing systems demonstrate reduced visibility
for the first demand point, as compared to the straight-line
trajectory. This is due to the initially selected sensor poses
which expected the object to enter from the upper-left corner

naish
5

1 2 3 4 5 6 7 8 9

Demand Number

0.0

0.5

1.0

N
or

m
al

iz
ed

 V
is

ib
ili

ty
,

n
= 0.2 m˙s-1, = π/2 rad˙s-1

= 0.1 m˙s-1, = π/3 rad˙s-1

= 0.025 m˙s-1, = π/4 rad˙s-1

= 0.0 m˙s-1, = 0 rad˙s-1

PSfrag replacements

v

ẋ
ẋ
ẋ
ẋ

α̇
α̇
α̇
α̇

Fig. 3. Observed visibilities of a straight-line trajectory.

1 2 3 4 5 6 7 8 9

Demand Number

0.0

0.5

1.0

N
or

m
al

iz
ed

 V
is

ib
ili

ty
,

n

= 0.2 m ṡ-1, = π/2 rad ṡ-1

= 0.1 m ṡ-1, = π/3 rad ṡ-1

= 0.025 m ṡ-1, = π/4 rad ṡ-1

= 0.0 m ṡ-1, = 0 rad ṡ-1

PSfrag replacements

v

ẋ
ẋ
ẋ
ẋ

α̇
α̇
α̇
α̇

Fig. 4. Observed visibilities of a parabolic trajectory when expecting a
straight-line trajectory.

of the workspace. When the object entered from the lower-
left corner, the sensors did not have time to react (sensing
of the first demand point is almost immediate, based on the
initial configuration, not dispatching). In addition, the selected
initial fusion subset was non-optimal. The dip towards the 6th
demand point is again the result of improper expectations. The
learned strategy positioned the sensors towards the right edge
of the workspace, expecting the target to follow a straight-line
path in that direction. Instead, the object is near the peak of
the parabola, requiring sensors in the middle of the workspace
to maximize visibility.

Despite these shortcomings, the simulations confirm that
all of the surveillance systems can still provide valuable
information, even when the actual object trajectory deviates
significantly from expectation. Again, the fastest dynamic
system performs best, the slower systems fair somewhat worse,
and all of the dynamic systems outperform the static system.
Thus, the ability of a sensing system to adapt to a new
trajectory is a function of the dynamic capabilities of the
sensors—the faster the sensors, the better the performance.

V. CONCLUSION

The coordination of multiple mobile sensors for the purpose
of moving object surveillance has been considered in this

paper. An approach based on dispatching and reinforcement
learning was introduced with the goal of maximizing the effec-
tiveness of a sensing system. In particular, two complementary
strategies are adopted. The first strategy assigns subsets of
sensors (to be used in a sensor fusion process) to demand
points on the (predicted) object trajectory. The second strategy
controls the pose of each sensor in the workspace, addressing
immediate surveillance demands while attempting to distribute
unassigned sensors in anticipation of future requirements. It
should be noted that the success of this dispatching approach
is dependent on the number of sensors available, the manoeu-
vrability of the sensors with respect to the target, the initial
sensor poses, and the accuracy of the predicted demand point
locations. In view of this, the RL-based dispatcher was shown
to improve the performance of dynamic sensing systems, as
compared with a similar static-sensor system.

ACKNOWLEDGMENTS

The financial support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) is gratefully
acknowledged.

REFERENCES

[1] R. T. Collins, A. J. Lipton, H. Fujiyoshi, and T. Kanade, “Algorithms for
cooperative multisensor surveillance,” Proceedings of the IEEE, vol. 89,
no. 10, pp. 1456–1477, Oct. 2001.

[2] T. Matsuyama and N. Ukita, “Real-time multitarget tracking by a
cooperative distributed vision system,” Proceedings of the IEEE, vol. 90,
no. 7, pp. 1136–1150, July 2002.

[3] W. B. Powell, “A comparative review of alternative algorithms for the
dynamic vehicle allocation problem,” in Vehicle Routing: Methods and
Studies, B. L. Golden and A. A. Assad, Eds. Amsterdam: North-
Holland, 1988, pp. 249–291.

[4] M. Shrivastava, P. K. Chande, and A. S. Monga, “Taxi dispatch: A
fuzzy rule approach,” in Proceedings of the 1997 IEEE Conference on
Intelligent Transportation Systems, Nov. 9-12, 1997, pp. 978–982.

[5] I. Benyahia and J.-Y. Potvin, “Decision support for vehicle dispatching
using genetic programming,” IEEE Transactions on Systems, Man, and
Cybernetics–Part A: Systems and Humans, vol. 28, no. 3, pp. 306–314,
May 1998.

[6] R. C. Luo and M. G. Kay, Eds., Multisensor Integration and Fusion
for Intelligent Machines and Systems. Norwood, NJ: Ablex Publishing
Corporation, 1995.

[7] M. D. Naish, E. A. Croft, and B. Benhabib, “Coordinated dispatching of
proximity sensors for the surveillance of maneuvering targets,” Journal
of Robotics and Computer Integrated Manufacturing, vol. 19, no. 3, pp.
283–299, June 2003.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, Massachusetts: The MIT Press, 1998.

[9] G. Tesauro, “Temporal difference learning and TD-gammon,” Commu-
nications of the ACM, vol. 38, no. 5, pp. 58–68, Mar. 1995.

[10] R. H. Crites and A. G. Barto, “Improving elevator dispatching perfor-
mance using reinforcement learning,” in Advances in Neural Informa-
tion Processing Systems: Proceedings of the 1995 Conference, D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge,
Massachusetts: The MIT Press, 1996, pp. 1017–1023.

[11] G. A. Rummery, “Problem solving with reinforcement learning,” Ph.D.
dissertation, Engineering Department, Cambridge University, 1995.

[12] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE
ASSP Magazine, pp. 4–22, 1987.

[13] R. S. Sutton, “Implementation details of the TD(λ) procedure for the
case of vector predictions and backpropagation,” GTE Laboratories,
Tech. Rep. TN87-509.1, Aug. 1989.

[14] M. D. Naish, E. A. Croft, and B. Benhabib, “Sensing-system config-
uration for dynamic dispatching,” in Proceedings of the 2001 IEEE
International Conference on Systems, Man, and Cybernetics, vol. 5,
Tucson, Arizona, Oct. 7-10, 2001, pp. 2964–2969.

naish
6

